水下AI辨識魚種 全天候偵測助海洋生態復育

水下AI辨識魚種 全天候偵測助海洋生態復育 | 華視新聞

林玟君

【記者林玟君綜合報導】台灣目前偵測魚種、計算魚類數量的方法,是由潛水員親自下水拍攝影像資料,後續再經由人工方式整理資料,較耗時耗力。國立海洋大學師生組成「台灣智能海洋 No.1團隊」發展水下AI技術,全天候自動化辨識魚種並紀錄數量,除了讓生態研究員更方便調查水下生態外,也能同時復育海洋環境。此技術在數位發展部AIGO計畫舉辦的111年度全國性的解題賽中獲得優等獎。

水下AI技術透過人工智慧可以節省分辨魚類所花的時間,並更細微地觀察魚類,彌補人類沒辦法全天在水下觀察的問題。此外,該技術也能自動化保留儲存空間,團隊指導教授李東霖補充,「如果沒有魚游過去,可能只是單純的空無一物,那就可以去保留它出現的那段偵測畫面,讓剩下的畫面就不要。」

水下AI技術能夠全天候即時自動化地進行海洋生態調查,為生態復育做出貢獻。 圖/團隊成員提供

魚種在水中與在空氣中會呈現不同顏色,也會隨著海的深度產生變化。為解決水下顏色失真的問題,團隊利用標準色卡進行水下顏色還原,再將偵測到的數值讓人工智慧機器進行深度學習(註),「標準色卡上面會有很多顏色,我們帶到水底下之後顏色會隨著深度變化,我們再去以原先的色卡顏色減少的比例去做偵測。」團隊成員胡育綺補充。團隊也結合電腦視覺技術中的背景建立,將非魚類卻具有動態性的生物自動設置背景,提升分辨魚種的準確度。

註:深度學習是一種機器學習技術,它所使用的算法類似於人腦中使用神經元的方式,可用於教會計算機一般人類可以輕鬆自然做到的事情。
台灣智能海洋 No.1團隊發展的水下AI技術,能夠即時辨識水下影像,自動化辨識魚種並紀錄數量。 圖/團隊成員提供

國立政治大學資訊科學系教授彭彥璁提及,水下隨著光線的不同也會影響到機器偵測顏色的準確度,「譬如說在白天光線充足,然後水質很清澈訓練的模型,就沒有辦法用到比較暗的,或者說人工這個外部的光源。」此外,機器在不同角度拍攝會影響到魚種的辨識,彭彥璁也建議,可以透過設定函數公式計算,「就是偵測少部分角度的資料去模擬出整個360度,把這個整個場景變成一種函數,輸入取得資料的座標就可以對應他的任意角度。」李東霖則希望未來能夠在海底裝設多個非固定攝影機,偵測更多不同位置的角度。

李東霖指出,雖然當今AI的應用研究範圍廣泛,但相對於天上及陸地,海洋還有許多發展空間,「在氣候變遷影響之下,水下生態的變化是非常快的,如果不靠科技去記錄,人們很難知道哪些魚種消失或是哪些魚種需要被保護。」團隊也期望透過水下AI技術實際量化魚種數據,讓相關學者做進一步研究,並同時督促我國政府進行相關的海洋保育工作。

新聞來源:政大-大學報



新聞關鍵字

加入Line好友